digraph g{
rankdir=LR;
node [shape=record,width=01,height=.1];
a[label="<1>Hash Table|<2>Node|<3>Node|...|<4>TreeNode"];
{
// graph[rankdir=LR]
node1[label="{<1>A1|<2>A2|...|An}"]
node2[label="{<1>B1|<2>B2|...|Bn}"]
// node3[label="{<1>C1|<2>C2}"]
subgraph cluster_treenode{
penwidth=0;
node[shape=circle];
root[label="", style=filled,fillcolor=black,width=.2];
n1[label="", style=filled,fillcolor=red,width=.2]
n2[label="", style=filled,fillcolor=black,width=.2]
n3[label="", style=filled,fillcolor=black,width=.2]
n4[label="", style=filled,fillcolor=red,width=.2]
n5[label="", style=filled,fillcolor=black,width=.2]
n6[label="", style=filled,fillcolor=black,width=.2]
root->n1;
n1->n2;
n1->n3;
root->n4;
n4->n5;
n4->n6;
}
}
a:2:e->node1:1 [style=dashed];
a:3:e->node2:1;
a:4:e->root;
// node3:d->node3:sa2;
}
$$f(a) = \frac{1}{2\pi i} \oint\frac{f(z)}{z-a}dz$$